1read 100read
2013年04月大学受験12: 数学の勉強の仕方 Part176 (424)
TOP カテ一覧 スレ一覧 2ch元 削除依頼 ▼
【後期のみ80人】山梨大学医学部8【東京の隣】 (472)
上智大学理工学部 part24 (894)
【やておき】やっておきたい英語長文【KP】 (625)
日本史総合スレpart35 (334)
【支援機構】奨学金総合スレ23【大学独自】 (624)
■■東京理科大 東京都市大 芝浦工大■■part5 (341)
数学の勉強の仕方 Part176
- 1 :2013/03/28 〜 最終レス :2013/04/03
- ■質問用テンプレ
【テンプレorまとめサイトを読みましたか?】はい・いいえ
【学年】 ←新、現の区別をはっきりと書く
【学校レベル】 ←なくても可
【偏差値】 ←どの予備校の模試かをきちんと書く
【志望校】 ←文系・理系、学部学科を書く
【今までやってきた本や相談したいこと】
☆★携帯ユーザーへ★☆
質問用テンプレを使いましょう。
上前次>>1 となってる所に「写」とあります。
これをクリックするとスレッド本文のコピーができます。
これで>>1の質問用テンプレをコピーして利用してください
既出の質問のページ内検索は Windowsの方は【Ctrl + F】で、Macの方は【Command + F】
新まとめサイト(議論中)
http://www.geocities.jp/math_study_2ch/index.html
大学受験版(総合) 特製 天プレ丼
http://ifs.nog.cc/daigakujuken.at.infoseek.co.jp/gakuho/index.html
前スレ
数学の勉強の仕方 Part175
http://kohada.2ch.net/test/read.cgi/kouri/1362827880/
- 2 :
- 1.問題は自力で解けなくてもよい
数学の学習の初期段階においては、参考書や問題集の問題を自力で解けなくても大丈夫です。
むしろ、解答や解説をしっかり読んで「考え方」「解き方」を理解することが学習の中心です。
解けなかった問題は、まず解答・解説を熟読して、「どうすれば解けるのか」を理解しましょう。
解答が理解できたら、その場で、解答を見ないようにして、ノートに自分で解き直してみます。
ノートに解いていて、途中で詰まってしまったら、解答をもう一度ちらっと見てみて、
「理解できていなかったポイント」「忘れてしまっていたこと」をはっきりさせた上で、さらに続きを解きます。
それで最後まで解答がたどりつけたら、次の問題に移る前に以下のような復習をしましょう。
まず問題だけを見て、
「この問題は〜〜の○○が△△の場合の、□□を求める問題である」
「第一手としてすべきことは□□を文字で表すことである」
「その後、○○を式に代入して文字を消去し、××の形にして計算すればよい」
「計算の注意点は○○を代入する時に3乗の公式が出てくるのでプラスマイナスに気をつけること」
「最後の答えは有理化した形で答えるようにすること」
といったような、問題の解き方のポイント・流れ・注意点を、言葉で復唱します。
次に、解答をざっと流し読みして、
「自分はここが分からなかった。このポイントを覚えておけば次からは解ける」
「ここの部分が計算のややこしいところだ。3乗の公式は2番目と4番目がマイナスになる。」
といったように、解答の中で自分が詰まったところの反省をするようにします。
そのポイントの部分をノートに赤線で印をつけておいてもいいでしょう。
とにかく、「自分はなぜ解けなかったのか」「どうすれば解けるのか」「何を覚えておくべきなのか」
といった事柄を、"意識"に上らせることが大事です。
ただ何となく「ふーん、そうすれば解けるんだ〜」と感心しているだけでは、次に出された時はまた解けません。
- 3 :
- 特に数学の苦手な人はこの作業をきっちりやりましょう。
これをやらずにどんどん先に進めるだけでは、やったそばから忘れていき、非効率的な勉強となります。
(理系で、数学の得意な人はこういうことを無意識にできる人もいます。)
また、解答をノートに書く際には、「よって」「ゆえに」「したがって」「すなわち」「ここで」「また」
などのような接続詞に注意を払って、話のつながりがはっきりと分かるようにしましょう。
さらに、「〜〜を○○とおく。」とか「よって、〜〜は△△であるから、(1)の結果を用いて、…」
などのような言葉づかいも、模範解答の真似をして、正確に書きましょう。
計算だけ並べて数値が出たからそれでよし、というのでは力はつきません。
最初にそういう「解答の型」を徹底的に身につけることが、後で底力となって効いてきます。
また、言葉による説明をきちんと書いて解くことは、自分の理解を深め、内容を記憶しやすくします。
「やり方さえ覚えておけば、解答くらい何とかなる」という考えは、初心者は厳に慎むべきです。
- 4 :
- 2.学習の流れは「解法習得」→「演習」→「解法習得」→「演習」
例題を理解して頭に入れたら、次は練習問題・類題を解いてみます。
ここでは、できるだけ自分の頭で考えて解いてみましょう。
「例題とどこが似ていてどこが違うのか」 「同じ考え方が使えそうなところはどこか」
といったことを意識しながら、さっきやった例題の真似をして、自分なりに解いてみます。
そうやって自力で答えを出すことができたら、答え合わせをして、あとは例題の時にやったのと同じような復習・反省をします。
また、自分で考えて解き方が分からなかった場合も解答を読んで、同じような復習・反省をしましょう。
正解できなかった場合、解けなかった場合は、例題の時にやった反省に加えて、
「例題と同じ解法で解ける問題のはずなのに、なぜ解けなかったのか」
「例題と同じ考え方をしている部分はどこで、例題にはなかった考え方をしているのはどの部分か」
「例題は理解したつもりだったのに、実はよく分かっていなかった部分はないか」
「例題の解法は、問題のどこをいじられると、どのように変化するのか」
といった反省も加えましょう。
- 5 :
- また、参考書は復習をしないといけません。復習をする際には、もう一度問題をノートに解き直すのではなくて、
上で述べたような感じで「この問題は○○を聞かれているから、〜〜のようにすればよい」「注意すべきポイントは△△の部分だ」
という風に、解答の「ポイント・流れ・注意点」を頭の中で復唱するようにします。
もし忘れていたら、もう一度模範解答をざっと見直して、何がポイントだったのかを思い出しましょう。
そして再び解答を隠して、自分で「ポイント・流れ・注意点」を唱えてみます。
このようにすれば、1問30秒ほどで復習ができます。できるだけ頻繁に復習をする方がいいですが、
最低限、「その日の学習を終える時」「次の日の学習を始める時」「その単元が終わる時」「その参考書が終わる時」
というペースでの復習をするといいでしょう。
(ただし、あまり頻繁に復習しすぎると、「今はただ目に焼きついているから覚えているけど、半年ほどしたら忘れてしまう」
ということもあり得ます。常に「自分は本当にこれを理解しているのか。模試や入試で出されてきちんと解けるか」ということを
問いかけながら復習するように心がけましょう。)
ここで、「この参考書をマスターした」と言える目安を以下に示しておきます。
(1)ページをペラペラとめくって、どのページのどの問題も見覚えがある。
(2)例題は見た瞬間に解答の「ポイント・流れ・注意点」を説明できる。
(3)練習問題もちょっと思い出せば解答の「ポイント・流れ・注意点」を説明できる。
(4)全体的に、自分がどの単元のどの分野のどの問題で苦労したのかを覚えていて、何が難しくて何が簡単なのかを説明できる。
(5)自分がやや苦手な項目、理解不足だと思われる項目を挙げることができて、それが参考書のどのへんに載っているかを知っている。
これを達成するためにも、日頃から、問題を解く以外に「これまでやったところをパラパラと見返す」という行為をすると有効です。
そうやって何気なしに見返していて「あ、この問題、どうするんだったっけ?」というページが発見されれば、
そこをピンポイントで復習することができます。そうやって、知識を忘れても忘れても繰り返し塗り重ね、
修復していく作業を習慣づけましょう。
- 6 :
- 3.標準的な学習プラン
数学の入試問題を解けるようになるために必要な過程と、使用参考書例は以下の通りです。
(1)教科書
A.「検定教科書」(各社)、「体系数学/精説数学」(数研出版)(+傍用問題集)
B.「これでわかる」(文英堂)
C.「聞いてしまえばとっても簡単!(本質の講義)」(旺文社)
D.「理解しやすい」(文英堂)
E.「白チャート」(数研出版)
各単元で学習されるべき基本内容を抜けなく示した本です。基本に抜けがある状態から(2)の本を始めようとしても
効率が悪いので、学校の授業で理解に漏れがあるときには、まずこの段階の本で単元の全体をつかみましょう
(一方、授業で十分に理解できている単元では、この段階の本を改めてやる必要はありません)。
B・Cは教科書が分かりづらい人、または、これまでサボっていて、慌てて教科書レベルをやり直そうとしている人向け。
D・Eは将来難関大学を狙っている1、2年生の先取り学習に適しています。
この他、いわゆる「講義系」と呼ばれる各種シリーズもあります。
(2)入試基礎固めレベル
A.「黄/青チャート、青チャートワイド版」(数研出版)
B.「チェック&リピート」(Z会出版)
C.「基礎問題精講」(旺文社)
D.「1対1対応の演習」(東京出版)
E.「標準問題精講」(旺文社)
入試レベルで必要とされる問題の解法・考え方に一通り触れていくための、いわゆる「網羅系」と呼ばれる類の本です。
基礎から入試に向けてじっくり実力養成したい人はAかB、または学校専売の「ニューアクション」シリーズを。
基礎〜比較的低難度の問題に絞って量を減らしたい場合、Cの利用も検討しましょう。
学校の授業を真面目に取り組み、「4STEP」や「クリアー」などの教科書傍用問題集を定期テストに合わせて真面目に
隅々までやってきた人は、DかEをやるといいでしょう。その場合、傍用問題集の中で忘れている部分がないように
復習してから取りかかると効果的。
なお、この段階の本を2種やることについては、肯定的/否定的両方の意見があります。2種やる場合には、
負担を考えて低難度本に軽量のものを選ぶか、軽量化(例えば例題のみ)する工夫をしてやる必要があるでしょう。
- 7 :
- (2.1)(1)〜(2)段階で使えるやや高難度な本
教科書代替(下注参照)
A.「本質の研究」(旺文社)
B.「受験数学の理論」(駿台文庫)
上級網羅系参考書・問題集((1)レベルが済んでいることが前提)
C.「赤チャート」(数研出版)
D.「フォーカスゴールド」(啓林館、書店取り寄せで入手可)
教科書を延長した理論補強+演習本((1)レベルが済んでいることが前提)
E.「(書籍)大学への数学(通称"黒大数")」(研文書院)
A・Bは全体を読みとおすには(1)の教科書類よりも素養が必要ですが、未習者から
読み始めることが可能なように書かれており、到達点が高い教科書として使える本です。
Aには章末に高レベル演習題がついています。Bは巻頭にある難易度表に従えば、
未習者は簡単な箇所から読み始め、難しい箇所は後回しといった読み方ができます。
C・Dは、通常の網羅系のレベルから比べると、高難度方向にカバー範囲が広い本です。
導入部から難しいわけではありません(特にD)。
Eは(1)レベルを終えた人が「基礎」のレベルを上げて(3)につなげるための本で、いわゆる
網羅系とはアプローチが異なります。数学が好きで自信がある人向けです。
- 8 :
- (3)入試標準演習(おおむね下に行くほどレベルが高い)
A.「チョイス新標準問題集」(河合出版)
B.「10日あればいい・演習編(黒)」(実教出版)
C.「理系数学入試の核心・標準編/文系数学入試の核心」(Z会出版)
D.「良問プラチカ」(河合出版)
E.「新数学スタンダード演習/数学3Cスタンダード演習」(東京出版)
F.「月刊『大学への数学』スタンダード演習」(東京出版)
G.「新こだわって!国公立二次対策問題集」(河合出版)
H.「数学問題総演習」(学研)
I.「数学実戦演習」(駿台文庫)
入試標準レベルの問題を「自力で解く」という練習をします。
AとB(特にそれぞれのA問題)は比較的易しいので、あまり自信のない人の復習用に。
Aは解説が詳しく、Bは逆に問題数が絞られていてコンパクトです。
網羅系参考書をしっかりやった人ならCかDかEをやればよろしい。
網羅系参考書で学んだ知識をフルに使って、できる限り自分で解き進めましょう。
ただし、10分〜15分程度粘っても解き方を思いつかない場合は、解答を読んでかまいません。
もちろん、できなかった問題は復習と反省を忘れずに。
もしこのレベルの本をやっていて、ちっとも自分で解けない、というようだと、網羅系参考書の解法知識が
身についていないので、そっちに戻ってやり直した方が得策でしょう。
(別の言い方をすれば、チャートが身についていない人がプラチカをやっても、やっぱり身につかないまま
終わるということです。頭の使い方を修正するのが先です。)
一般国公立・上位私立くらいまでなら、このレベルを徹底的にやりこむことが最も重要です。
したがって、この段階では1冊に絞らなくとも、必要に応じて複数の本を選んでやってもいいでしょう。
- 9 :
- (4)上級解法集
A.「微積分基礎の極意」(東京出版)
B.「解法の探求微積分」(東京出版)
C.「マスターオブ整数」(東京出版)
D.「数学ショートプログラム」(東京出版)
E.「解法の探求確率」(東京出版)
F.「解法の突破口」(東京出版)
難関大志望者・医学部志望者などは、これらの本で高度な知識やテクニックを学ぶといいでしょう。
一般的な基準からすれば極めてレベルが高い本ばかりなので、(3)までのプロセスをおろそかにしてこれらの本だけをやっても
実力はつかないので注意しましょう。
(5)入試発展・実戦演習
A.「やさしい理系数学」(河合出版)
B.「ハイレベル精選問題演習」(旺文社)
C.「理系標準問題集・数学」(駿台文庫)
D.「ハイレベル理系数学」(河合出版)
E.「新数学演習」(東京出版)
F.「理系数学入試の核心・難関大編」(Z会出版)
G.「チャート式数学難問集100」(数研出版)
H.「最高峰の数学へチャレンジ」(駿台文庫)
I.「入試問題集」(数研出版)
J.「月刊誌『大学への数学』記事・日日の演習など」(東京出版)
K.「大学入試攻略数学問題集」(河合出版)
難関大志望者・医学部志望者などで、数学の実力に磨きをかけたい人向けの本です。
A.「やさ理」B.「ハイ選」D.「ハイ理」E.「新数演」あたりは、上級解法集としての色彩も強いので、
「演習」というよりは「高度な解法を身につける」という用途にも適しています。
C.「理標」F.「核心難関大編」も重要解法をひと通り学べます。
I.〜K.は末尾にありますが、最難ではなく、直前年度の入試問題から演習用に好適な問題を
選抜した年次版問題集(I,K)や記事(J)です。I.は幅広く採録、K.は比較的高度な問題が中心です。
自分の力を試しながら磨いていく演習に向いています。
- 10 :
- Q.「頑張って数学やってきたのに、模試の偏差値が上がりません。参考書を替えた方がいいのでしょうか」
「勉強してきたはずなのになぜ解けないのか」は、あなたにしか分かりません。
「この参考書をやれば、偏差値いくつ取れる」とか、そんなこと、決まっているわけはありません。
解けないのは何かあなたの内部に原因があるはずです。まずそれを追求してください。
以下のことをチェックするといいでしょう。
1.模試で解けなかった問題の模範解答をよく読んで、理解します。
その過程で、
「自分はなぜ解けなかったのか」
「何に気づけば解けたのか」
「どこに注目すれば解けたのか」
「何を知っていれば解けたのか」
ということを考えて、「つまづきのポイント」を探ってください。それを全問題についてやります。
2.その結果、自分に足りないものを考えます。
「模範解答が何をしているのかは理解できるんだけど、ここの式変形は思いつかないなあ。計算テクニックが未熟なのかなあ」
「ああ、これってあれなのか。参考書で似た問題を見たことあるけど、応用がきかなかった。類題の練習が足りないか」
「模範解答が難しくて何しているのかよく分からない。こりゃ自分で解けるはずないわ。完全な実力不足」
「自分はここで詰まってしまったけど、ああ、そう考えればいいのか。そりゃ発想の転換が必要だなあ。頭を柔らかくしなきゃ」
「なにこれ?これって公式?これって有名なのかなあ?ちょっと解法の知識が足りないか?」
みたいな感じ。
- 11 :
- 3.その反省を踏まえて、自分が何をすべきかを考えます。
「やったはずのことが思い出せていないから、これまでの参考書の問題をひと通り解きなおそう」
「解答を読めば理解できるんだけど、参考書で学んだ知識の応用のしかたのコツがつかめていない。
類題のたくさん載っている標準問題集を1冊こなそう」
「解答が難しくて理解できない。普段からちゃんと模範解答を熟読して、理解して再現できるように練習しよう。
答えがあっていればいいという態度を改めよう」
「自分の知っている範囲内のことは全部できている。解けていない問題は全然自分の力が及んでいない。
ハイレベル問題集に取り組もう」
「見たことある問題だったら解けるんだけど、見た目が新しい問題で思考が停止する。
頭を柔らかくするために、典型問題よりも最新の入試問題を練習してみよう」
といったように。
そういう「自分で自分を観察する」ことを「メタ認知」と言ったりしますが、このメタ認知の作業が重要です。
「解けない。参考書がダメなのかなあ」ではなくて、「解けない。なぜだ。自分の脳に何が足りないのだ。
何を補えば解けるようになるのだ」を探ってください。
この作業は普段の勉強中も重要ですよ。「解けなかった。また明日やりなおそう」ではなくて、
「なぜ解けなかったのか。どこに気づけば解けたのか。次から自力で解けるためには何を覚えておけばいいのか。」
というメタ認知を延々と繰り返しましょう。そうすれば進むべき道が見えてきます。
それを日ごろからやっていれば、「自分は何が分かっていて、何が分かっていないのか。自分の今の実力はどの程度で、
どのレベルの模試ならどのくらい取れるはずなのか」といったことが把握できるようになります。
そういう力を身につけましょう。
- 12 :
- その他のよくある質問
Q.「1対1と標準問題精講のどちらを選ぶか悩んでいるのですが」
A.標準問題精講の方が基礎から載っているので、基礎を復習しながら入試にも対応していきたいという人にお勧めです。
一方、1対1は基礎がほとんど載っていないので、レベルは高めだと思ってください。
4STEP等の教科書傍用問題集を隅々までマスターしたという人でなければ、ついていけない可能性が高いです。
解答・解説も、標問の方は丁寧、1対1はハイレベル、と言えます。
Q.「整数問題を扱った問題集でお勧めは何ですか?」
A:「佐々木隆宏の整数問題が面白いほどとける本」(中経出版)、「細野真宏の数と式[整数問題]が本当によくわかる本」(小学館)、
「1対1対応の演習/数学I ― 大学への数学」(東京出版)、「マスターオブ整数」(東京出版)、
「整数の理論と演習」(現代数学社)
Q.「確率が全然分からないんですけど、お勧めの問題集はありますか?」
A:「坂田アキラの確率が面白いほどわかる本」(中経出版)、「ハッとめざめる確率」(東京出版)、
「細野真宏の確率が本当によくわかる本」(小学館)
Q.「プラチカの1A2Bと3Cの難易度が全然違う(3Cが難しい)のでどうすればいいんでしょうか?」
A:プラチカ3Cは確かに難しいです。東大・京大・東工大や単科医大などの志望者以外には適していません。
代わりに「新こだわって!微分・積分[入試基本編]」と「新こだわって!行列・1次変換」(いずれも河合出版)
などを使用するといいでしょう。
Q.「○○大学志望なのですが、何チャートが良いですか?」
A.受験勉強をチャートだけで完成させるわけではありませんから、
難関大を志望しているからといって、難しい本をやらなければならないというわけではありません。
どこを志望するにしても、基本的なことから積み上げていく必要があります。
したがって、志望校よりも、現在の学力・到達度を基準にして選んだ方がいいといえます。
一般には「黄チャート」が最も標準的で万人向けです。
- 13 :
- 難易度ランク
【S:目安偏差値東大系模試70〜】
最高峰の数学へチャレンジ(駿台文庫)/チャート式数学難問集(数研出版)/ハイレベル理系数学(河合出版)/新数学演習(東京出版)
【A:目安偏差値東大系模試65〜】
理系プラチカ3C(河合出版)/解法の突破口(東京出版)/解法の探求微積分(東京出版)/解法の探求確率(東京出版)/
マスターオブ整数(東京出版)/マスターオブ場合の数(東京出版)/数学を決める論証力(東京出版)/理系入試の核心難関編(Z会)/
西岡国公立医学部(栄光)/入試数学伝説の良問(講談社ブルーバックス)/お医者さんになろう医学部への数学(駿台文庫)/
最高峰への理系数学(代々木ライブラリー)
【B:目安偏差値東大系模試60〜】
やさしい理系数学(河合出版)/医学部攻略への数学(河合出版)/ハイレベル精選問題演習(旺文社)/
新数学スタンダード演習(東京出版)/スタンダード演習3C(東京出版)/この問題が合否を決める(東京出版)/
合否を決めたこの一題(東京出版)/西岡私立医学部(栄光)/国公立大理系学部への数学(学研)/難関大突破精選(学研)/
難関大突破数学の底力(学研)/数学問題総演習(学研)/最難関大への数学(桐原書店)/オリジナル12AB受験編(数研出版)/実戦演習(駿台文庫)/
医学部良問セレクト(聖文新社)/河村医学部(中経出版)/受験数学基本ノート(代々木ライブラリー)/数学ブリーフィング(代々木ライブラリー)
【C:目安偏差値東大系模試55〜】
標準問題精講3C(旺文社)/極選発展編(旺文社)/2度解く!!シリーズ(旺文社)/小島難関大(栄光)/国公立二次・私大とれる!(栄光)/
新こだわってシリーズ(2〜6)(河合出版)/大学入試攻略問題集(河合出版)/理系標準問題集(駿台文庫)/受験数学の理論問題集(駿台文庫)/
入試数学の思考法(駿台文庫)/インテンシブ10発展編(Z会)/インテンシブ10整数(Z会)/チェック&リピート実戦編(Z会)/探求と演習(Z会)/
数学ショートプログラム(東京出版)/微積分基礎の極意(東京出版)/数学12AB入試問題集(理系)(数研出版)/数学3C入試問題集(数研出版)/
難関大理・医系入試のサマリー(文英堂)/天空への理系数学(代々木ライブラリー)/壁を超える数学(代々木ライブラリー)
- 14 :
- 【D:目安偏差値東大系模試50〜/河合全統記述65〜】
標準問題精講2B(旺文社)/1対1対応の演習(東京出版)/教科書NEXT(東京出版)/ハッと目覚める確率(東京出版)/
文系プラチカ(河合出版)/新こだわってシリーズ(1、7)(河合出版)/スタンダード12AB受験編(数研出版)/オリジ・スタン3C受験編(数研出版)/
チャート式入試頻出(数研出版)/数学12AB入試問題集(文理系)(数研出版)/理系入試の核心標準編(Z会)/文系入試の核心(Z会)/
数学頻出問題総演習(桐原書店)/面白いほど(佐々木の整数・発想力、阿由葉の確率・数列、奥平)(中経出版)/実力強化問題集(文英堂)
【E:目安偏差値河合全統記述60〜】
標準問題精講1A(旺文社)/極選実践編(旺文社)/基礎力完成シリーズ(旺文社)/理系プラチカ1A2B(河合出版)/チョイス(河合出版)/
数学標準問題演習(桐原書店)/10日あればいい(黒)(実教出版)/基本演習(駿台文庫)/インテンシブ10標準編(Z会)/
面白いほど(阿由葉の文系数学、志田の行列・ベクトル、斎藤、柏熊)(中経出版)/数学ハンドブック(ナガセ)/
解き方がわかる数学(代々木ライブラリー)
【F:目安偏差値河合全統記述55〜】
基礎問題精講(旺文社)/10日あればいい(濃緑)(実教出版)/チャート式入試必携(数研出版)/数学の計算革命(駿台文庫)/
チェック&リピート(Z会)/合格る計算(文英堂)/理系入試最速攻略(文英堂)/シグマ基本問題集(文英堂)/
勇者を育てる数学(代々木ライブラリー)/力を伸ばす数学(代々木ライブラリー)
【G:目安偏差値河合全統記述50〜】
はじめての入試問題(旺文社)/土曜日に差がつく(河合出版)/やばい!(ゴマブックス)/10日あればいい(薄緑)(実教出版)/
カルキュール(駿台文庫)/面白いほど(坂田、森本、大吉、大久保、大淵)(中経出版)/ホントはやさしいシリーズ(文英堂)
【H:目安偏差値河合全統記述50未満】
基礎力徹底ドリル(学研)/はじめからていねいに(ナガセ)/ドラゴン桜式ドリル(モーニング編集部)/これでわかる問題集(文英堂)
- 15 :
- 各大学・学部の合格者平均点を目標とする場合における大体の目安です。
目標ランク<理系>
【S】東京理三/京都医
【B】東京理一・二/京都非医/地方旧帝医/神戸医/東京医科歯科医/慶應医
【C】東京工業/地方国公立単科医/地方上位国公立医
【D】地方旧帝非医/神戸非医/地方下位国公立医/上位私立医/早慶非医
【E】地方上位国公立非医/上智/東京理科/下位私立医
【F】地方下位国公立非医/MARCH
【G】日東駒専
【H】大東亜帝国
目標ランク<文系>
【B】東京/京都
【C】一橋
【D】地方旧帝/神戸/早慶
【E】地方上位国公立/上智
【F】地方下位国公立/MARCH
【G】日東駒専
【H】大東亜帝国
- 16 :
- ←80←←←←←←←←70←←←←←←←←60←←←←←←←←50←←←←←←←←←40←
□□□発展□□□■■■応用■■■□□□標準□□□■■■基本■■■□□□基礎□□□
□□□□□□□□□□■■■■■■■■■■■■■■■■■■□□□□□□□□□□□□ スタンダード12AB受験編
□□□□□□□■■■■■■■■■■■■■■■□□□□□□□□□□□□□□□□□□ オリジナル12AB受験編
□□□□□□□□□□■■■■■■■■■■■■■■□□□□□□□□□□□□□□□□ オリジスタン3C受験編
□□□□□□□□□□■■■■■■■■■■■■■■■■■■■■■■■□□□□□□□ 本質の研究
□□□□□□□■■■■■■■■■■■■■■■■■■□□□□□□□□□□□□□□□ 小島難関大
□□□□□□□■■■■■■■■■■■■■■■■■■■■□□□□□□□□□□□□□ 実戦演習
□□□□■■■■■■■■■■■■■■■■■■■■■■■■■■□□□□□□□□□□ 受験数学の理論
□□□□□□□□■■■■■■■■■■□□□□□□□□□□□□□□□□□□□□□□ やさ理
□□□■■■■■■■■□□□□□□□□□□□□□□□□□□□□□□□□□□□□□ ハイ理
- 17 :
- ←80←←←←←←←←70←←←←←←←←60←←←←←←←←50←←←←←←←←←40←
□□□発展□□□■■■応用■■■□□□標準□□□■■■基本■■■□□□基礎□□□
□□□□□□□□□□□□□□□□□□□□□□□□□□□□■■■■■■■■■■■■ これでわかる
□□□□□□□□□□□□□□□□□□□□□□□□□■■■■■■■■■■■■■■■ 白茶
□□□□□□□□□□□□□□□□□□□□■■■■■■■■■■■■■■■■■■□□ 理解しやすい
□□□□□□□□□□□□□□□□□□□■■■■■■■■■■■■■■■■■■■□□ 黄茶
□□□□□□□□□□□□□■■■■■■■■■■■■■■■■■■■■■□□□□□□ 青茶
□□□□□□□□□□□□□□□□■■■■■■■■■■■■■■■□□□□□□□□□ 赤茶(例題のみ)
□□□□□□□□□■■■■■■■■■■■■■■■■■■■■■■□□□□□□□□□ 赤茶(練・演習含)
□□□□□□□□□■■■■■■■■■■■■■■■■■■■□□□□□□□□□□□□ 黒大数
□□□□□□□□□□□□□□□□□□■■■■■■■■■■■■■■■■□□□□□□ ニューアクションβ
□□□□□□□□□□□□□□□□■■■■■■■■■■■■■■■□□□□□□□□□ ニューアクションα
□□□□□□□□□□■■■■■■■■■■■■■■■■■□□□□□□□□□□□□□ ニューアクションω
□□□□□□□□□□□□□□□□□■■■■■■■■■■■■■■■■□□□□□□□ チェクリピ
□□□□□□□□□□□□■■■■■■■■■■■■■■■□□□□□□□□□□□□□ 河合入試攻略
□□□□□□□□□□□■■■■■■■■■■■■■■■■□□□□□□□□□□□□□ 1対1
- 18 :
- ←80←←←←←←←←70←←←←←←←←60←←←←←←←←50←←←←←←←←←40←
□□□発展□□□■■■応用■■■□□□標準□□□■■■基本■■■□□□基礎□□□
□□□□□□□■■■■■■■■■■■■■■■□□□□□□□□□□□□□□□□□□ 大数増刊新スタ演
□□□□□□□□■■■■■■■■■■■■■■■■■□□□□□□□□□□□□□□□ 大数増刊3Cスタ演
□□□■■■■■■■■■■■■■■■■□□□□□□□□□□□□□□□□□□□□□ 新数学演習
□□□□□■■■■■■■■■■■□□□□□□□□□□□□□□□□□□□□□□□□ 月刊大数 日々演
□□□□□□□□□□□□■■■■■■■■■■■■■■□□□□□□□□□□□□□□ 月刊大数 スタンダード
□□□□□□□□□□□□□□□■■■■■■■■■■■■□□□□□□□□□□□□□ 理系プラチカ1A2B
□□□□□□□□□□■■■■■■■■■■■■□□□□□□□□□□□□□□□□□□ 理系プラチカ3C
□□□□□□□□□□□□□■■■■■■■■■■■■■■■□□□□□□□□□□□□ 文系プラチカ
□□□□□□□□□□□■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 細野本
□□□□□□□□□□□□□□□□□□□■■■■■■■■■■■■■■□□□□□□□ 基礎問題精講
□□□□□□□□□□□□□■■■■■■■■■■■■■■□□□□□□□□□□□□□ 標準問題精講
□□□□□□□□■■■■■■■■■■■□□□□□□□□□□□□□□□□□□□□□ ハイレベル精選問題演習
□□□□□□□□□□□□□□□□□□■■■■■■■■■□□□□□□□□□□□□□ チョイス
□□□□□□□□□□□□■■■■■■■■■■■■■■□□□□□□□□□□□□□□ 入試の核心
□□□□□□□□□□□□□□■■■■■■■■■■■■■■■□□□□□□□□□□□ 文系核心
- 19 :
- 参考…数研出版による同社参考書・問題集の位置づけ
http://www.chart.co.jp/goods/sugaku_list/level.html
【注意】
マセマ関連についての議論は専用スレにてお願いします。
(関係者や支持者が再三トラブルを起こしてスレが荒れる元となったため。)
特に宣伝行為や荒らし行為は厳禁とします。
以上、テンプレです。
【追記】
前スレを使い切るまで、このスレへの書き込みは自粛してください。
- 20 :
- 数研出版の学校向け問題集のリンクよりも、こっちのほうがよほど需要があると思う
参考…東京出版(大学への数学)による同社参考書・問題集の位置づけ
http://www.tokyo-s.jp/products/d_zoukan/d_pattern/index.html
それと前スレも書いたんだけど
出版社の表示と比べ、テンプレの表示はあまりにもおかしい
ここのテンプレ上だと1対1とスタ演がハイレベルすぎるように思う。
- 21 :
- マセマはやめとけ。応用力がつかない。ただのゴミ。
- 22 :
- >>6
>C.「聞いてしまえばとっても簡単!(本質の講義)」(旺文社)
これの新課程版が出れば今の高校生は助かるね
なぜかこれを勧めると工作員扱いされるが基本的には旺文社も長岡も嫌いだぞ
- 23 :
- >>22
なんかそれタイトルが気に食わない
- 24 :
- >>20
出版社の位置づけとかじゃなくて、スレの連中がどう感じたかで決めてるだろ。
俺はこれであってると思う。
- 25 :
- 主観入っちゃうとどうどうめぐり
- 26 :
- ここで聞くようなレベルじゃないかもしれんけど、数学が壊滅的に出来ない受験生どうしたらいい?
偏差値は河合のマーク模試ですら30台前半
聞いてみると、中高の先生が酷すぎて基礎事項に穴だらけ
(校内平均が全国平均から見ても酷すぎる。これで高校入試の偏差値53ある自称「進学校」とか笑わせる。
どのくらい酷いかというと、函数の増減表を導関数のプラスマイナスで判定するのではなくて
グラフを見て増か減か書いて、それから導関数のプラスマイナスを書けと指導されていた)
ちょっと手の施しようがないレベルの生徒で悩んでいるんだが一年でどうにかなるもんかね
センターでせめて数IA、IIB、65点くらい取らせたいんだが
- 27 :
- 忠実すぎるから教えられることに対して何も疑問に思わないんだろう。
つまり正しい考え方だけを教え続ければ理論上そいつは無限に伸び続ける。
- 28 :
- 世の中には割合をわかっていない大人もいるがな
自問自答自学自習の習慣をつけさせる
- 29 :
- 最近3次のときは増減表書かないわ…ダメだな
- 30 :
- >>26
素直に中学の復習から始めるしかないだろ・・・
- 31 :
- >>26
1Aは中学の復習をしつつ各大問前半取り
2Bは数列・ベクトルは完全無視で統計・プログラム
で、センター逃げ切りを狙うかな。
- 32 :
- 10日あればいい 演習編のシリーズってつかったひといますか?
結構安いし、青チャが終わったんで買おうかまよってるんですが...
- 33 :
- 白チャートやったらセンター何点とれる?
黄チャートだと何点?
- 34 :
- >>33
どちらも満点とれる
- 35 :
- センターなんて教科書やったら
過去問で形式馴れして終わり
- 36 :
- 【テンプレorまとめサイトを読みましたか?】はい
【学年】浪人です
【偏差値】模試が手元に残ってないですがセンターでTA40UB20です
【志望校】広大文学部で数学はセンターのみ
【今までやってきた本や相談したいこと】去年一年間数学の個別指導を受けていましたが
形式変更もあり酷い点数でした
今年は何が出るか分からないし基礎ができていないのでいちから勉強できる参考書を探しています
- 37 :
- >>32
どこ目指してるかわからんが、青チャきちんと仕上げたら、10日のやつははいらない
- 38 :
- >>37
ありがとうございます。
- 39 :
- 偏差値30から一年でセンター8割取りたいんだけど
親戚の京大生にチャートでいい?って聞いたら
チャートはやめと俺にも無理って言われタ
導入終わった後ってなにやればいいん?w
- 40 :
- >>39
教科書からきっちり。
尼で教科書ガイドを入手してやりこむのオススメ。
- 41 :
- プラチカ終わって一対一の1a2b見たら
下に練習問題が初見じゃ意味ワカンネ状態なんだけど
レベル下げたほうがいい?
- 42 :
- やさ理とスタ演っておなじぐらいのレベルですか?
あと>>15ってAランクはないんですか?
- 43 :
- >>42
>>13をみればその2つの質問に答えてくれるであろう
- 44 :
- スタ演は一通りの模範解答しか乗ってないのでかなり難しい。
- 45 :
- >>22
そもそも旺文社はどの教科もロクな本出してないので使用拒否する
- 46 :
- 質問者が本を買っているのか立ち読みなのかワカンネ
- 47 :
- >>42
スタ演は、出版社発表>>20ではさほどレベル高くない
やさ理との比較はわからない
- 48 :
- 志望大学が東北工学部なんだけど
青チャート→プラチカ・一対一VC→やさ理
のプランで良いのかな?
- 49 :
- 東北工なら青チャートのみにして他科目鍛えるかな。
青チャートのみで合格者平均ぐらいにはなるかと。
- 50 :
- >>48
それ全部出来たら余裕で合格ですけど
今の青茶のすすみ具合によっては受験までに終わりませんよ
青茶終わったら過去問やってみて、苦手分野だけ一対一などで補強
くらいで良いと思いますよ
- 51 :
- 青チャートTAUBは一周終わった
VCはこれからなんだけど、要らないかな他の?
- 52 :
- チャートに飽きたら過去問やれよ5周ぐらい
- 53 :
- 白茶→センター過去問10年分と来たやり直しおっさんです。
志望大学は東大文系学部なのですが、次に何をすべきでしょうか。
ありがちなモデルプランでも提示していただけるとありがたい。
- 54 :
- >>40
導入書(坂田)で多分教科書の問題はできるようになったと思います。
なので教科書をやるというのは
どうしてでしょうか?
あっ偏差値30ってのは想定で、まだ模試受けてないのでなんとも言えないです。
- 55 :
- 1:1って普通にに考えたら
問題めちゃくちゃ多いよな
- 56 :
- >>54
「多分」ならなおさら確認した方がいいよ。
ss40までなら教科書重視でかなりいけるし。
- 57 :
- >>56
傍用ではなくて教科書ほうがいいのですか。
- 58 :
- それとss40ってなんですかね?
- 59 :
- 偏差値standard score
- 60 :
- センター試験かとオモタ
- 61 :
- >>57
傍用を使う時でも教科書参考にする方がいいかと。でもまず大基本は教科書ですよ。
- 62 :
- 新課程で行列が消えて複素数平面になるらしいけど、
初学者の複素数平面でお勧めの本ってありますか?
それと計算苦手な人が一番困る単元ってどれでしょう?
- 63 :
- 計算苦手な人が一番困る単元→数列〜微積分
- 64 :
- センターは教科書傍用問題集だ
- 65 :
- 個人的に数3の積分がきつい
- 66 :
- 数3の数列むずい
- 67 :
- 数3の数列むずいってのは数2の数列ちゃんと身についてないだけだと思うよ
- 68 :
- >>67
知ってる…
坂田からやってる
- 69 :
- 確率が苦手なので強化したいのですが、でるもん確率と阿由葉の確率どっちが到達点高いですか?
ハッ確は挫折しました。
- 70 :
- 証明がまるっきりできないんだが
- 71 :
- オリジナル1a2b受験編やった人いる?結構むずいのだが
- 72 :
- >>65
そんなあなたにカルキュール。
- 73 :
- 数3cはチョイスしかいまのところかんがえてないんだけど
、これだけじゃ旧帝レベルはきついかな?
あと、1A2Bはなにをしたらいいかまったくわからん
- 74 :
- 二次試験が数学しかないんだけど(センターは5教科9科目)
毎日どのくらいやれば来年の2月までに偏差値70超えますかね?
学校の先生は数学だけなら1日3時間で十分って言ってましたが
やや少ないと思いませんか?
理科と英語勉強しないでいい分時間配分が逆に難しいです。
自分のレベルは今年の東大理系数学3題分かりました。
- 75 :
- >>74
9科目?
- 76 :
- >>74
> センターは5教科9科目
そんなとこあるの?どこ?
- 77 :
- マセマはやめとけ応用力がつかないただのゴミ
- 78 :
- すいません7科目でした
- 79 :
- >>74
一日30分〜1時間ぐらいかな。
- 80 :
- >>74
東大数学3題分かったってのは完答出来たってこと?
それなら全国模試偏差値70くらいの力は既にあるはず
東大模試で70ってんなら1日3時間じゃ足りないね
- 81 :
- 駿台全国模試は最高でも64で毎回57くらいです
- 82 :
- 数学の勉強してるんですが、どうしても勉強する意欲が沸きません
問題集ではなく数学の魅力や美しさを感じられる数学に関する小説、エッセイや読み物があったら
教えてください。あとあまり高度なものは理解できないですw
- 83 :
- 高校数学で数年ごとに一次変換と複素平面を入れ替えるのって、わざとなのかな?
世代ごとに既習範囲の多様性をもたせたいみたいな思惑があって
時期を見計らってわざと入れ替えてるとか
それよりコンピュータにつながる離散数学をもっと重視してほしいが
- 84 :
- >>65
あんなんやり方覚えて計算ゴリ押しだろ
1A2Bの方が10倍ムズイ
- 85 :
- >>82
数学ガールではダメ?
- 86 :
- そんなものはない
勉強したくないならしなくていいよ
- 87 :
- 数学ガールはリア充がイチャイチャしてるのを自分だけ数学しながら見つめる本
- 88 :
- 整数問題苦手なんだけど佐々木の整数で対処できるの
京都の整数あたりに手が出せるようになりたい。
- 89 :
- おう、がんばれ
- 90 :
- >>82
ベルの『数学を作った人々』早川文庫全三巻
有名な数学者たちの伝記
ガロアの章などは泣ける
- 91 :
- >>83
同意やな
これからは情報科学は絶対強化せなならん
プログラミングも必修にすべき
- 92 :
- >62
25年度から数IIIの教科書とガイドを売る
www.kyokashoguide.com/result.php
計算:平方完成 余弦定理 指数対数
>74
時間配分が難しいなら志望校をage英理を勉強すれば
>82
学校の図書館でブルーバックス
整数問題
- 93 :
- >73
>8
センター 難関大学に出る解法の極意 奥平禎の理系数学頻出 佐々木隆宏の数学の発想力が面白いほど身につく本
- 94 :
- 解法の発想って3Cも入ってる?
- 95 :
- >>73
3Cがチョイスですむくらい分量少ないとは思えないが・・・
自分は1A2Bだけしか使わないけど青チャートの例題類題演習問題ぜんぶと
チェック&リピート全部解いてようやくセンター試験レベルならなんとかそこそこの
点数取れる、程度にしかならなかった。
進学校出身者で数学の基礎力ある人ならそれで十分なのかもしれないけど。
- 96 :
- バカ過ぎ
勉強法がダメなことも、それに気付いていないこともバカ過ぎ
- 97 :
- >>96
バカすぎるのかもしんないなー
完璧に解法頭に叩き込んだ、っていえる自信もないし。
でもチョイスだけじゃ足りない気がすんだよね。
数学はマジゼロからじゃ死ぬほど時間かかるよ。
- 98 :
- センターなんて4stepと黄茶で十分だと思うが
- 99 :
- >>98
4stepがなにかわからないけど黄で足りると思ってるならセンター舐めすぎでしょw
2012年みたいな簡単な年ならともかく、今年みたいな難易度だと黄チャじゃ対応できないよ。
というかチャートはセンターにあんまり出ない問題多いからセンターだけ考えたら効率悪い気がする。
- 100read 1read
- 1read 100read
TOP カテ一覧 スレ一覧 2ch元 削除依頼 ▲
正直、京大・阪大より立命館の方が上だろ (388)
【支援機構】奨学金総合スレ23【大学独自】 (624)
【神奈川】関東学院大学part27【KGU】 (226)
立命館アジア太平洋大学総合スレッド15 (452)
地方国立行くよりMarchの方がいいのか?2 (518)
多摩大学受けた人いませんか? (230)
--log9.info------------------
【@FreeD】P-in Free 2PWL【無線LAN】 (855)
なぜPCにはファンがあってPDAにはないのか? (296)
PocketPCに幻滅してPalmに舞い戻った奴のすれ。 (708)
【XScale】日立 NPD-20JWL,10JWL【CE .NET】 (549)
ThinkPad 230Cs/530CS (543)
【ZERO3移行】シグマリオン3Vol.43【もうだめぽ】 (512)
(HPの)jornada548/525/568スレ(黒歴史?) (237)
Excel総合相談所 108 (457)
Office2010/2013アクティベーション総合スレッド part1 (485)
1万円前後以内で便利なペイントツール (200)
Sun Microsystems 最寄の親戚 (203)
デスクトップPCでLinuxが普及する訳がないと思った時 (316)
オススメLinuxディストリビューションは? Part45 (632)
【初心者スレ】Ubuntu Linux 87 (364)
linuxは古いPCでも快適に動くと言っている奴 (220)
CentOS Part 38【RHEL Clone】 (208)
--log55.com------------------
(´)3(`) ニコニコ精神病院 八病棟目の真実 (∪´ω`)
電波
【けいおん!】唯&憂スレ3 @電波板
コテ雑法に少しだけウンチを塗りたくってなんか良い感じにするスレッド
【北九】竹●勉【虚言癖】
電波板だがあえてまともに会話してみるスレ
ふかきょん軍団
統合失調症 おかもとまり 恵比寿駅で大暴れ